RFID – Interventionless Completion Tools

Bruce Robertson | Weatherford
Presentation Agenda

- Introduction to RFID.
- Principles of Tool Activation.
- RFID Portfolio and Developments.
- Challenges Addressed.
- CASE STUDY – Upper Completion.
- CASE STUDY – Lower Completion.
- RFID Tools Track Record.
- Summary and Questions.
Introduction to RFID

- **New Technology?**
 - Used in WWII – ca. 1940’s.
- **Radio Frequency is Common.**
- **Secure, Reliable & Proven Technology.**
 - * Supermarket / Shop Security
 - * Building Entry, Hotels, Work-Place
 - * Tracking of Goods / Animals
 - * Passports
 - * Even golf-balls (www.radargolf.com)
Principles of Tool Activation

Time (T) can be 3, 5, 7 minute holds. Amplitude of pressure not important. Rate of change > 256 psi/min.

Acti Frac Signal Real-Time Clock
Principles of Tool Activation

“Fuse” Based Technology

Built On Fused Valve Block And Atmospheric Module Technologies.
This Platform Of Products Are Single Shot Devices That Use Well Hydrostatic Pressures To Function The Device Or Series Of Devices.

Common/Standard Enablers

- RFID Electronics Technology
- Pressure Telemetry Technology
- Antenna Technology
- Lithium Battery Technology
- i-Rabbit® Communication System Technology
- Graphic User Interface Software Technology
- Business Operating Facilities
- Operation & Service Facilities

“Pump” Based Technology

Built On Micro-Pump And Spool Valve Technologies.
This Platform Of Products Are Multi Shot Devices That Use A Positive Displacement Pump And A Multi-Position Spool Valve To Function A Device Or Series Of Devices.
RFID Portfolio and Development

“Fuse” Based Technology
- Port Collar Sleeve
- RFID HCS
- ICD Sleeve
- AutoStim™ / RIV
- ARID™ Sleeve
- Circ. Toe Sleeve

Common/Standard Enablers
- AutoStim™ / RIV
- ARID™ Sleeve
- Circ. Toe Sleeve

“Pump” Based Technology
- OptiBarrier™
- KeyStone™ HPU
- RFID OptiSleeve™
- Jetstream™ and RipTide™
- I-Stim™ Sleeve
Challenges Addressed

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Efficiency</td>
<td>Production</td>
<td>Cost</td>
<td>Efficiency</td>
</tr>
<tr>
<td>Port Collar Sleeve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFID ICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OptiBarrier™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KeyStone™ HPU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFID OptiSleeve™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICD Sleeve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AutoStim™ / RIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARID™ Sleeve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-Stim™ Sleeve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JetStream™ / RipTide™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RFID: A Platform for Success

Deepwater Challenges

- Well Construction
- Effective Completions & Simulation
- Reservoir Efficiency & Characterization
- Production Sustainability
- Health, Safety, Environment, Quality
- Relationships & Terms
- Optimized Facilities

- Well Placement
- Minimal Interventions
- Compensating For Poor Seismic Quality
- Well Clean up & Testing
- Well Assurance and Monitoring
- Compliance
- Capacity and Operability

- Drilling Hazards
- Effective Sand Control
- Delineating Complex Systems
- Flow Assurance
- Skilled & Experienced Workforce
- Good Collaboration With Partners
- Logistics

- Drilling Performance
- Sustained Zonal Isolation
- Predicting Reservoir Quality
- Reservoir Performance Prediction
- No Safety or Environmental Incidents
- Achieve Production Commitments
- Good Communication & Collaboration With Government

- Salt
- Intelligent Wells & Permanent Monitoring
- Predicting Reservoir Architecture
- Pressure Maintenance
- Tool Reliability
- Good Communication & Collaboration With Government
- Facility Reliability

- Geomechanics
- Multi-layered Reservoir
- Analysis & Optimization
- Local content

COST REDUCTION

REAL TIME INTEGRATED OPERATIONS
Deepwater Challenges

<table>
<thead>
<tr>
<th>RFID: A Platform for Success</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deepwater Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Construction</td>
</tr>
<tr>
<td>Drilling Hazards</td>
</tr>
<tr>
<td>Drilling Performance</td>
</tr>
<tr>
<td>Effective Completions & Stimulation</td>
</tr>
<tr>
<td>Minimal Interventions</td>
</tr>
<tr>
<td>Multi-layered Reservoir</td>
</tr>
<tr>
<td>Intelligent Wells & Permanent Monitoring</td>
</tr>
<tr>
<td>Reservoir Efficiency & Characterization</td>
</tr>
<tr>
<td>Well Clean up & Testing</td>
</tr>
<tr>
<td>Flow Assurance</td>
</tr>
<tr>
<td>Pressure Maintenance</td>
</tr>
<tr>
<td>Production Sustainability</td>
</tr>
<tr>
<td>Health, Safety, Environment, Quality</td>
</tr>
<tr>
<td>No Safety or Environmental Incidents</td>
</tr>
<tr>
<td>Tool Reliability</td>
</tr>
<tr>
<td>Relationships & Terms</td>
</tr>
<tr>
<td>Achieve Production Commitments</td>
</tr>
<tr>
<td>Logistics</td>
</tr>
<tr>
<td>Optimized Facilities</td>
</tr>
</tbody>
</table>

SERVICE QUALITY – REDUCED COST
Case Study – RFID - Keystone

SYSTEM SUMMARY:

- Fully Remote Upper Completion System.
- RFID Operated via Keystone HPU.
- Currently Suitable for 7” x 3 ½” and 9 5/8” x 5 ½” Configurations

OPERATING LOGIC:

- Run upper completion to depth.
- Flow RFID Tag – Close OptiValve.
- Pressure Test Tubing.
- Apply Pressure Pulse to open the port in the HCS.
- Set Packer.
- Apply Pressure pulses to open OptiROSS Sliding Sleeve.
- Circulate out annulus.
- Flow RFID tag – Close OptiROSS sliding Sleeve.
- Apply Pressure Pulse to re-open OptiValve.
Case Study – RFID - Keystone

Challenge:
- Deliver a Remotely Operated Upper Completion.
- Remove the need for Intervention, Wash-Pipe, Control Lines.
- Isolate the Reservoir.
- Set the Production Packer in 7in. Casing.
- Open Isolation Valve and Turn Well Over to Production.

Solution:
- RFID based Keystone System deployed to include:
 - RFID Hydraulic Power Unit, Circulation Valve, Production Packer, and a Fall Through Flapper Valve.

Result:
- Simplified Upper Completion Deployment
- Tubing successfully tested without setting packer.
- One Day Rig Time Saved with no intervention crews.
Case Study – Lower Completion

SYSTEM SUMMARY:
- Remotely Operated stimulation sleeves.
- Deploy Lower Completion without wash-pipe or intervention.
- No Limitation on number of Sleeves
- Control over clean-up sequence to suit reservoir conditions.

OPERATING LOGIC:
- Run Lower Completion Liner to TD.
- Pump Breaker with RFID tag – Close RIV.
- Hydraulically set Liner Hanger / Packer and TerraForm Packers.
- Run Upper Completion.
- Pressure Pulse open I-Stim Sleeve to Stimulate Zone # 1.
- Drop RFID Tag during Flush to open Zone # 2 and close Zone # 1
- Stimulate Zone # 2 and repeat for remaining zones.
- Apply pulse to sequentially open all sleeves from toe to heel.
Case Study – Lower Completion

CHALLENGE:
- Long Reach Horizontal WAG injection well in Norway
- 6,000m with +1,000m horizontal lateral @ 150°C
- Injection Profile evenly distributed across 6 discreet intervals.
- Disrupt filter cake, establish injectivity independently per zone.
- No wash-pipe, intervention or control lines

SOLUTION:
- Open-Hole Lower Completion delivered to partition 6 intervals.
- Pressure pulse open 6 x frac sleeves, stimulate / tags to close
- Pressure pulse open 12 x ICD’s at 1 hr. intervals.

RESULT:
- Required Gas and Water Injection Rates Confirmed
- Client Comment “A Great Well”
RFID Tools Track Record

<table>
<thead>
<tr>
<th>RFID Tools</th>
<th>First RFID Tool RIH in May 2009</th>
<th>>200 Tools / Systems Run Since Then</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Collar Sleeve</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RFID HCS</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>OptiBarrier™</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>KeyStone™ HPU</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RFID OptiSleeve™</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>ICD Sleeve</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>AutoStim™ / RIV</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ARID™ Sleeve</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>i-Stim™ Sleeve</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>JetStream™ / RipTide™</td>
<td>135 / 250,000 ft</td>
<td></td>
</tr>
</tbody>
</table>
Which technologies do the industry require to meet the commercial or technical challenges you face?
Thank You!

Bruce Robertson | Weatherford
Bruce.Robertson@eu.weatherford.com
ConocoPhillips Ekofisk – Case Study

- Dual Completion – 7-5/8” open hole completion & 4-1/2” IWS
- Successfully deployed 7-5/8” completion Q1 2012, included:
 - Multiple ROKANKORs
 - Toe Ankors
 - Intermediates
 - Expansion Joints
 - Acid Circulation Valves
 - i-detect diagnostics
BP Ula – Case Study

Water and Gas Alternating injector

- Establish injectivity in 6 zones independently
- Maintain injection flow profile for life of well
- No wash pipes or intervention
- From paper to well within 1 year